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Cyclic recurrence in nonlinear unidirectional 
ocean waves 

By PETER J. BRYANT 
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(Received 8 July 1987 and in revised form 4 November 1987) 

A fully nonlinear model is developed for the unidirectional propagation of periodic 
gravity wave groups in deep water, in which the shape of the group envelopes 
changes cyclically. It is intended to describe the slow-time evolution of wave groups 
on the open ocean surface, and to generalize the cyclic recurrence that can occur 
during the sideband modulation of Stokes waves and Schrodinger wave groups. The 
weak nonlinear interactions are shown to concentrate the wave energy a t  the centre 
of each group at regular intervals, causing the waves there to be of greater height 
locally in space and time. This is suggested as one mechanism for the local wave 
breaking that is observed on the open ocean surface. The cyclically recurring wave 
groups may be interpreted as the limit-cycle stage in a progression from uniform 
wave groups to chaos on the forced, damped, ocean surface. 

1. Introduction 
The open ocean surface often has the appearance of an ensemble of gravity wave 

groups, with each group being identifiable over a number of wavelengths along and 
transverse to the direction of wave propagation. This is consistent with the common 
belief about the regular arrival of waves larger than the others, and may be 
associated with the presence of underlying swell. The linear theory predicts that a 
group should slowly disintegrate as the wave components composing it disperse. The 
weakly nonlinear theory, modelled by the nonlinear Schrodinger equation, shows 
that groups can have constant envelopes (envelope solitons) when the linear 
dispersion is balanced by weak nonlinear interactions. Analysis of this equation (93) 
shows also that it has group solutions whose envelope shape recurs cyclically. It can 
be expected that gravity wave groups on the ocean surface do not have envelopes of 
constant shape (ignoring forcing and damping), but rather that  dispersive and 
nonlinear effects are not in balance, causing the envelopes to change slowly in time. 
The particular case examined here, in which the slow change in shape of the 
envelopes is cyclic, is intended as a model for more general shape evolution in 
time. 

Another reason for investigating cyclic recurrence is its role in the long-time 
evolution of gravity wavetrains on deep water. Lake et al. (1977) showed 
experimentally, and by computation from the nonlinear Schrodinger equation, that 
a modulated wavetrain may exhibit recurrence by returning cyclically near to its 
initial condition. Yuen & Ferguson (1978) continued this investigation with a more 
jetailed analysis of the dependence of the computed wavetrains on the initial 
:onditions, finding and explaining how the pattern of recurrence could be simple or 
:omplex. Bryant (1982) found that much smaller changes occur during the 
modulation cycle for initial wave groups of constant envelope than for initial uniform 
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waves of constant shape. The interpretation is that the modulated wave groups are 
almost in balance between dispersive and nonlinear effects, but the modulated waves 
are much further from this balance. That investigation was based on a numerical 
solution of the weakly nonlinear evolution equations with the quadratic and 
resonant tertiary interactions retained. Reservations about weakly nonlinear 
approximations led to the development of the present fully nonlinear method. Dold 
& Peregrine (1986) use a boundary-integral method for solving the two-dimensional 
nonlinear unsteady water wave problem to calculate the evolution of an initial 
modulated wavetrain. Some of their examples demonstrate cyclic recurrence, and 
some show wave breaking. 

The common feature of these previous investigations is the numerical time- 
stepping of evolution equations for nonlinear water waves, beginning with an initial 
modulated wavetrain. Cyclic recurrence is found to occur, in the sense that the 
wavetrain returns cyclically near to the initial state. Because this property is 
important to ocean waves, it seems desirable to calculate directly the exact cyclic 
recurrent wave solutions of the nonlinear evolution equations, as a check on the time- 
stepped solutions, and to understand better the nonlinear structure of ocean waves. 
The aim here is to investigate general forms of fully nonlinear unidirectional wave 
groups with cyclic recurrence, for which the modulated wavetrains are a particular 
case. 

The numerical method is a generalization of that  developed previously (Bryant 
1985) for nonlinear waves in deep water. The unidirectional cyclic recurrent wave 
groups are represented by a triple Fourier series in space, fast time, and slow time, 
whose coefficients are chosen so that the water-surface displacement and velocity 
potential satisfy the fully nonlinear water-surface boundary conditions over a 
network of points in space and time. The terms in the Fourier series are those that 
contribute above a small numerical level of significance to the nonlinear boundary 
conditions. Although it  had been intended to calculate the linear stability and time 
evolution of perturbed recurrent wave groups, the number of wave components 
needed for their description proved to be too large to make these computations 
accurately at  the present time. Empirical relations for forcing and damping, both 
with wave number or frequency dependence, could have been added to the model 
without difficulty, but i t  was decided as a first step to  confine attention to the 
dispersive and fully nonlinear contributions only. 

2. Wave-group description 
A slowly varying wavetrain of typical wavelength 2x1, typical wave amplitude a, 

and fixed group length 2xL, propagates on deep water in the x-direction. The x- and 
y-variables are non-dimensional multiples of I ,  t is a multiple of ( l / g ) t ,  the water- 
surface displacement ~ ( x ,  t )  is a multiple of a, and the velocity potential $(x, y, t )  is 
a multiple of (&a. The ratio e = a / l  is a measure of wave slope. The non-dimensional 
governing equations are 

$zz + 4 y y  = 0, Y < E T k  t ) .  (2.1 a )  

(2.1 c )  

( 2 . l d )  

The wavenumbers k are non-dimensional integer multiples of 1/L,  with the 
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wavenumbers in the fundamental waveband centred on k,  = L/1 (which need not be 
an integer). The wave phase in the fundamental waveband may be written 

k k 
-x--ot =-5 -  
k,  k0 

for waves on deep water. Nonlinear wave interactions produce harmonic wavebands 
centred on j k o ,  j = 0 , 1 , 2 ,  . . . . The waveband j = 0 describes the set-down and mean 
velocity associated with each wave group, and j = 1 is the fundamental waveband. 
When the phase in (2.2) is generalized to other wavebands, the water-surface 
displacement may be written 

J k z ( i )  

i = O  k - k l ( j )  

The nonlinear frequency correction /3 is O ( ( k -  k , ) /ko )2  provided the dispersive and 
nonlinear effects are near balance. If the coefficients ulk are all constant, this double 
Fourier series describes periodic wave groups of constant envelope. It should be 
appreciated that a Fourier series expansion for nonlinear wave groups of constant 
envelope must be a double series such as (2.3), with one index (j) numbering the 
different wavebands, and the other index ( k )  numbering the wave components within 
each waveband. Particular values of the index k occur in more than one j 
waveband. 

Wave groups with cyclic recurrence are described by (2.3) if the coefficients 
have a slow periodic dependence on t .  This periodic dependence can be included with 
the wave phase, when the water-surface displacement is written 

J J z ( j o )  JCz(io,.ii) 
7 = c  c (z-$)-ij,t-j,at 

jo=O ;rl=Jl(io) k=kl( io , ld  

The associated velocity potential is 

The frequency of cyclic recurrence a is much less than I, and thejpt contribution in 
(2.3) has been absorbed into the j, at contribution. In  a frame of reference moving 
with the group, the term $jo t  describes the fast-time variation of the wavetrain 
relative to  the group, while the term j, at describes the slow-time variation of the 
shape of the group envelope. If the Fourier coefficients ujojlk, blollk in (2.4) are all 
constant, these triple Fourier series describe wave groups with cyclic recurrence. 
Conversely, Fourier series expansions for nonlinear wave groups with cyclic 
recurrence must be triple series such as (2.4) if the Fourier coefficients are all 
constant. Particular values of the index k occur in more than onej,,j, waveband. 

As the wave slope 6 is increased, the centre of the calculated fundamental 
waveband increases from the given value of k,. Rescaling k,  to the calculated value 
is equivalent to  increasing the group propagation velocity from the linear value t to 
the appropriate nonlinear value. There is no loss of generality in retaining t as the 
group velocity in (2.4a, b ) ,  provided this rescaling is done before assigning a correct 
group velocity to any calculated example. 

It should be emphasized that (2.4a, 6 )  describe particular unidirectional periodic 
wave groups on deep water with cyclic recurrence. A general form for such groups 
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must allow for more general phase relationships between the Fourier wave 
components. Equations (2.4u, 6)  can be made to satisfy (2.1) to within a prescribed 
small numerical precision, and it is this that  is taken as the justification for studying 
(2 .4a ,b)  as a model of ocean wave groups. 

3. Nonlinear Schrodinger equation 
The slow evolution of a weakly nonlinear unidirectional wavetrain on deep water 

is modelled by the nonlinear Schrodinger equation, which in the present non- 
dimensional notation is 

i ( A , + ~ A , ) - ~ A , , - ~ € 2 / A 1 2 A  = 0, (3 . la)  

where rl = R(A(x, t )  expi(x-t)}. (3.1 b )  

The surface displacement is approximated by the fundamental waveband alone, 
when ( 2 . 4 ~ )  reduces to 

Cyclic recurrent solutions of the nonlinear Schrodinger equation are sought for 
which 

(3.3) 

If k, is an integer and the amplitudes are symmetric about k = k,, then 

(3 .4a)  
k J ,  K ( i )  

A ( x ,  t )  = C x A j k  cos- (x-kt) exp (-ijat), 
j=J, k=O k ,  

where k - k ,  is rcplaced by k ,  and 

Ajo = u l j k o >  A j k  = 2 u l j k o + k  (k * O).  

Equation (3 .4a)  may be rewritten 
J ,  

A(%, t )  = C l$(x-!j) exp (-ijat), 

(3.4b) 

(3.5) 
j=Jl 

where each 4 is symmetric. 
The known envelope solutions of constant shape may be obtained analytically by 

reducing (3.5) to  the singlej = 1 term, substituting in (3 . lu) ,  and solving for Fl. The 
factor exp ( - iat) then describes a small frequency correction to the carrier wave. The 
analytical solution can be extended to simple cyclic recurrent wave groups, for 
example by reducing (3 .5)  to three terms, j  = 0 , 1 , 2 ,  and substituting in ( 3 . l a ) .  The 
small quantity a is then the cyclic frequency for the shape evolution of the group 
envelopes. 

There is no difficulty in calculating numerically the cyclic recurrent wave groups 
of the form of (3.4), (3.5). This is done by substituting (3 .4a)  into (3.1 a )  using trial 
values for the Fourier coefficients Ajk  and the frequency a .  The trial values are then 
improved by Newton’s method so that ( 3 . 4 ~ )  satisfies (3.1 a )  and the normalization 
constraint (3 .6)  to any prescribed small numerical precision. 

The wave-slope parameter t: is defined from the amplitude a t  the centre of each 
group a t  time t = 0, equivalent to the normalization 

C C Ai, = 1. (3 .6)  
i k  
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Cyclic recurrent wave-group solutions of the form of (3 .4a)  could be found only for 
values of c greater than about 0.2. Although these are solutions of the nonlinear 
Schrodinger equation (3. l ) ,  they are not satisfactory solutions for nonlinear waves in 
deep water because the weakly nonlinear assumption has doubtful validity at these 
large values of c .  However, they do providc satisfactory first estimates to the fully 
nonlinear, multi-waveband, cyclic recurrent wave-group solutions, with the 
conversion statcd in (3.46). The calculated SchrGdinger solutions are used for this 
purpose only, and have not been investigated otherwise. 

The cyclic recurrent solutions of the nonlinear Schrodinger equation show 
reasonable qualitative agreement with the corresponding fully nonlinear solutions, 
but the quantitative agreement is poor. In particular, the frequency of cyclic 
recurrenee, a,  can differ by a factor of two or more between the two solutions at the 
same values of c and k,.  This wide difference for 01 is to be expected because cyclic 
resonance is a nonlinear phenomenon, and the Schrodinger equation provides only a 
first approximation to the nonlinear wave interactions. For the sarnc reason, the 
Schrodinger solutions underestimate the steepening and growth of the central waves 
in each wave group during the cycle of recurrence. Substitution of the Schrodinger 
solutions with their associated velocity potentials into the nonlinear boundary 
conditions (2.1 c, d )  reveals large residuals a t  the higher frequencies and wave- 
numbers. 

4. Fully nonlinear groups 
The triple Fourier series expansions for 7 and $ (equations 2.4a, 6) are substituted 

into the nonlinear boundary conditions (equations 2.1 c, d )  with trial values for the 
Fourier coefficients. The boundary conditions are then expressed also as triple 
Fourier series expansions. The trial values are improved by Newton's method until 
all Fourier coefficients in the expansions of the boundary conditions are less than 
some small numerical error. This is equivalent to satisfying the boundary conditions 
to within a small numerical error over a three-dimensional network of points in 
x-it,  t ,  and at. The normalization constraint at the origin in phyqcal space, the 
triple series equivalent of (3.6), is imposed also. 

The procedure adopted is to begin with a particular single-waveband solution of 
the nonlinear Schrodinger equation (3.4), then to add wave components and 
wavebands to (2.4a, b )  until no more are required, for a given numerical precision. 
Although adequate precision was achieved for the single-waveband Schrodinger 
solutions with only 20-30 wave components, many more whve components are 
needed for the full solutions. To conserve computer resources, no more than about 
900 wave components were used, and these were placed in the wavebands to achieve 
the best numerical precision. The large number of wave components results from the 
steepness of the waves during the cycle of recurrence. This steepness is not modelled 
adequately by the single-waveband Schrodinger solutions, and requires the inclusion 
of higher wavebands to achieve satisfactory precision. 

A number of families of cyclic wave-group solutions have been found and 
investigated. The dependence of the cyclic frequency a on the amplitude ratio & for 
one such family when lc, = 5 is sketched in figure 1. Each'solution occurs a t  two 
points on this closed curve, once with the value of e appropriate to at = 0, and again 
with the value of & appropriate to at = x. The solution at the point A ,  for instance, 
where c = 0.160, a = 0.01357, occurs again at the point B where c = 0.262. This 
means that the wave slope a t  the centre of the group in this example increases from 
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FIGURE 1.  The cyclic frequency CL vus. the amplitude parameter B for one family of cyclic wave- 
group solutions. 

FIGURE 2. The time evolution of the envelope of the first cyclic wave-group example, including 
the initial wavetrain. Vertical magnification 20. 
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FIGURE 3. The time evolution of the envelope of the second cyclic wave-group example, including 
the initial wavetrain. Vertical magnification 20. 

FIGURE 4. The time evolution of the envelope of the third cyclic wave-group example, including 
the initial wavetrain. Vertical magnification 20. 
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0.160 to 0.262 over half the cycle of recurrence. The time evolution of the envelope 
for this solution is illustrated in figure 2, with the initial wavetrain sketched also. 
Two group lengths relative to a frame of reference moving with the group velocity 
are shown across the figure. The slow-time evolution over two cycles or recurrence is 
drawn in perspective up the figure. It can be seen in the figure how each group 
sharpens and steepens towards the centre of each cycle, as the energy of the group 
becomes concentrated at its centre. 

The points P and Q on the curve of figure 1 are the two points where the initial 
envelope and the envelopes at at = x are the same. They are both points of 
bifurcation to new families of solutions for which the cyclic period is halved. The 
wave components in the new families of solutions are non-zero in (2.4a, b )  only for the 
odd values of j, in the odd wavebands and the even values of j, in the even 
wavebands. The time evolution of the envelope for an example in the bifurcated 
family is sketched in figure 3. The two cycles of recurrence up the figure in this 
example extend from at = 0 to at = 2x, rather than from at = 0 to at = 4x as in figure 
2,  because the double increment ofj ,  in each waveband causes the envelope to have 
a period n/a .  The initial values of c is 0.360, decreasing to 0.208 a t  at = in, with 
a: = 0.021 54. The maximum value of c for Stokes waves of steady shape is about 0.44, 
suggesting that a small increase in the minimum value of c: in this example could 
cause the maximum value of e during the cycle of recurrence to be sufficiently large 
for wave breaking to occur. The wave component having the largest magnitude 
occurs in the fundamental waveband at k = 3, followed by those a t  k = 4, 5(= k o ) ,  
and 6. This is consistent with the initial wave profile sketched in figure 3, which 
shows three dominant waves per group length. 

The third example, sketched in figure 4 from one of the families with all values of 
j, present in each j ,  waveband, rises from e = 0.240 initially to c = 0.362 at at = x, 
with a: = 0.02043. In contrast with the previous example in figure 3, the initial wave 
profile shows five dominant waves per group length, and the cyclic period for change 
of envelope shape is almost twice that of figure 3. The cyclic period for the first 
example, in figure 2, is about 1.5 times that in figure 4. Unlike figure 2, the groups 
in figure 4 occur at regular intervals along an otherwise nearly uniform wavetrain, 
and they have a continuous identity as they propagate. 

5 .  Discussion 
The three examples illustrate how thc nonlinear interactions between wave 

components concentrate wave energy locally in space and time, causing in some cases 
almost a doubling of wave heights. This mechanism provides one explanation for 
local wave breaking on the ocean surface, where the wave energy is concentrated 
sufficiently that thc wave at the centre of a sharply peaked group disintegrates. The 
breaking property cannot be demonstrated by a spectral method, but is a logical 
extension of the properties illustrated. Three-dimensional effects are likely to be 
significant on the ocean surface, in addition to the two-dimensional cyclic 
concentration of wave energy described here. 

An intriguing possibility worth investigation is that cyclically recurring wave 
groups may be part of a progression to chaotic motion on the ocean surface. A review 
by Miles (1984) summarizes the progression as consisting of fixed points, limit cycles, 
multiply periodic limit cycles, and chaotic motion on strange attractors. The fixed 
points here are the wave groups of constant shape, and the limit cycles are the wave 
groups of cyclically recurring shape. The next stcp would br t o  make thc model more 
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realistic by adding empirical relations for forcing and damping, both with 
wavenumber or frequency dependence. If the progression to chaotic motion is 
applicable, then for certain parameter ranges involving resonant forcing and weak 
damping, the wave motion would evolve to  a continuous wave spectrum. Phillips 
(1985) identified wave forcing, nonlinear wave interactions, and wave breaking as 
being the dominant contributing factors to  the equilibrium range in ocean wave 
spectra. It may be possible, when more powerful computing resources become 
available, to integrate numerically a resonantly forced, damped, unidirectional, fully 
nonlinear model of the ocean wave surface from an initial modulated wavetrain to an 
equilibrium wave spectrum such as that described by Phillips. However, as Newel1 
(1986) has indicated, it is still a major problem to understand the transition from a 
spatially regular model with a chaotic temporal behaviour to a model of the ocean 
surface in which the temporal and spatial power spectra are both broadband. 

Most of this investigation was done during a period of leave at the Institute for 
Geophysics and Planetary Physics, University of California, San Diego, as a guest of 
John W. Miles. Acknowledgement is made to the National Center for Atmospheric 
Research and to  the San Diego Supercomputer Center, both sponsored by the 
National Science Foundation, for the computing time used in this research. 
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